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A lattice Boltzmann method for solute transport
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SUMMARY

A lattice Boltzmann method is developed for solute transport. Proper expressions for the local equilibrium
distribution functions enable the method to be formulated on rectangular lattice with the same simple
procedure as that on a square lattice. This provides an additional advantage over a lattice Boltzmann method
on a square lattice for problems characterized by dominant phenomenon in one direction and relatively
weak in another such as solute transport in shear flow over a narrow channel, where the problems can
efficiently be approached with fine and coarse meshes, respectively, resulting in more efficient algorithm.
The stability conditions are also described. The proposed method on a square lattice is naturally recovered
when a square lattice is used. It is verified by solving four tests and compared with the analytical/exact
solutions. They are in good agreement, demonstrating that the method is simple, accurate and robust for
solute transport. Copyright q 2008 John Wiley & Sons, Ltd.

Received 29 June 2007; Revised 31 March 2008; Accepted 8 November 2008

KEY WORDS: rectangular lattice; lattice Boltzmann method; solute transport; advection–diffusion
equation; mathematical model; numerical method

1. INTRODUCTION

With the success of the lattice Boltzmann method for fluid flows, the method has been used in
many different areas [1], demonstrating its efficiency, potential and capability. In recent years, the
lattice Boltzmann method has already been far beyond its original application for fluid flows and
been regarded as a novel numerical method for other problems. For example, Xu et al. [2] modelled
molten carbonate fuel cell performance with lattice Boltzmann method. Zhou [3] developed a
lattice Boltzmann model for groundwater flows. Ni et al. [4] investigated the lattice Boltzmann
method for the statistical evolution of numerous microvoids under high stress triaxiality. Ghai
et al. [5] used the lattice Boltzmann method to simulate the transient thermal response of a
nanoscale hot spot in solids.
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The lattice Boltzmann method is being improved and further developed. van der Sman [6] studied
the characteristics of the lattice Boltzmann method fixing the single relaxation time to one and
proposed a finite Boltzmann scheme. Rohde et al. [7] proposed a local grid refinement technique
for the lattice Boltzmann method, allowing the method to be used from coarse to fine grid cells and
vice versa. The restriction of the method to rectangular or square lattice has been investigated. van
der Sman and Ernst [8] proposed a convection–diffusion lattice Boltzmann scheme for irregular
lattices without need for interpolation. Later, van der Sman [9] extended the scheme for diffusion
problem on unstructured triangular grids. Chew et al. [10] developed a lattice Boltzmann method
on irregular lattices by transforming the lattice Boltzmann equation into a differential form. Wu
et al. [11] used interpolation technique to solve the lattice Boltzmann equation on non-uniform
grids. Zhang et al. [12] presented a lattice Boltzmann model for advection–dispersion equation on
rectangular lattice by use of both weighing factors in the calculation of the macroscopic quantity
and more than three directionally dependent relaxation times.

In the literature, there are lattice Boltzmann methods available for solution of the advection–
diffusion equation for solute transport, most of which are based on the standard hexagonal/square
lattices [13–15]. Since a model with square lattices usually provides not only easier treatment
of boundary conditions, but also more accurate results than that with hexagonal lattices [16, 17],
square lattices become preferred in lattice Boltzmann simulations. Although Zhang et al. [12]
developed a lattice Boltzmann model for solution of the equation on rectangular lattice, the use
of at least three directionally dependent relaxation times makes the procedure more complex than
the standard method. Thus, in this paper, a simple lattice Boltzmann model for solute transport
on a rectangular lattice is proposed in a novel way. The method is effectively the same as that
on a square lattice. It is a natural extension of the lattice Boltzmann method on square lattice to
rectangular lattice. The only difference lies in embedding the feature of a rectangular lattice in the
proper local equilibrium distribution functions on a square lattice with least modification. When
a square lattice is applied, the proposed method on a square lattice is naturally recovered without
any additional treatment. It is validated by solving four benchmark problems and the results are
compared with analytical/exact solutions.

2. LATTICE BOLTZMANN METHOD

In this section, the governing equation for solute transport is introduced first. Then the lattice
Boltzmann equation is described with proper expressions for the local equilibrium distribution
functions on a rectangular lattice. Next the recovery of the advection–diffusion equation from the
lattice Boltzmann equation is shown in detail. In addition, the boundary conditions are described.
Finally, the stability conditions are discussed.

2.1. Solute transport

The transport of solute or concentration is described with the advection–diffusion equation in
environmental hydraulics

�C
�t

+ �(uiC)

�xi
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where C is the concentration, t the time, Di the dispersion coefficient in i direction, ui the fluid
velocity, xi the Cartesian coordinate in i direction and repeated index i is the Einstein summation
convention, meaning a summation over the space coordinates. Such a convention is used throughout
the paper.

2.2. Lattice Boltzmann equation

A lattice Boltzmann equation with the BGK collision operator is

f�(x+e��t, t+�t)− f�(x, t)=−1

�
( f�− f eq� ) (2)

in which f� is the distribution function of particles, f eq� the local equilibrium distribution function,
�t the time step, e� the vector of the particle speed, � the single relaxation time [18] and x the
space vector defined by the Cartesian coordinate system, i.e. x=(x, y) in 2D space and x=(x, y, z)
for 3D, where x and y stand for horizontal directions and z for vertical.

For simplicity without loss of generality, we may restrict the following description to the 2D
situation and the similar procedure can be applied to the 3D case (A 3D lattice Boltzmann model for
solute transport is given in the Appendix). Since there is only one scalar variable C to determine,
the 5-speed rectangular lattice including a rest particle would be sufficient to simulate the solute
transport, which is shown in Figure 1. The vector of the particle speed e� is defined by

e� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0,0), �=0

ex

[
cos

(�−1)�

2
,sin

(�−1)�

2

]
, �=1 and 3

ey

[
cos

(�−1)�

2
,sin

(�−1)�

2

]
, �=2 and 4

(3)

where

ex =�x/�t, ey =�y/�t (4)

and �x is the lattice size in the x direction and �y in the y direction.

2

4

13

Figure 1. 5-velocity rectangular lattice.
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Now we define the concentration C in the distribution functions as

C(x, t)=∑
�

f�(x, t) (5)

which is the macroscopic quantity to be determined. Only if a suitable expression for the local
equilibrium distribution function f eq� is defined, can the concentration resulted from the lattice
Boltzmann equation (2) be the solution to Equation (1).

In the literature, there are some researches on choice of the equilibrium distribution functions in
the lattice Boltzmann method for solution to the advection–diffusion equations. Dawson et al. [19]
used a simple expression for the equilibrium distribution functions, which had the drawback that the
same local equilibrium distribution function was applied to the rest particle as that to the particles
else. Zhang et al. [12] retained the linear parts of the equilibrium distribution functions for the
lattice Boltzmann method to solve the Navier–Stokes equation together with an additional function
to avoid zero in the denominator as the equilibrium distribution functions. van der Sman and
Ernst [20] used similar equilibrium distribution functions to that for the Navier–Stokes equations
and the procedure is complicated.

In order to develop a simple lattice Boltzmann method on the rectangular lattice shown in
Figure 1, we introduce the three following general constraints on f eq� :∑

�
f eq� =C (6)

∑
�
e�i f

eq
� =uiC (7)

∑
�
e�i e� j f

eq
� =�i exeyC�i j =

{
�xexeyC, i= j = x

�yexeyC, i= j = y
(8)

where �i j is the Kronecker delta function defined as

�i j =
{
0, i �= j

1, i= j
(9)

and �i is a constant, representing a dimensionless physical dispersion in the i direction as defined
by Equation (27); in particular, �x and �y are the dimensionless physical dispersion coefficients
in the x and y directions, respectively.

Based on the constraints (6)–(8) and the lattice symmetry, f eq� can be expressed in the following
simple equation:

f eq� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(10)
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It should be noted that Equations (5) and (6) together form a conservation condition as∑
�

f� =∑
�

f eq� (11)

If �x=�y or ex =ey , Equation (10) becomes the local equilibrium distribution function for the
lattice Boltzmann method on a square lattice.

2.3. Recovery of the advection–diffusion equation

TheChapman–Enskog expansion is used to prove that the concentration calculated fromEquation (5)
is the solution to the advection–diffusion equation (1) for solute transport, i.e. the macroscopic
equation (1) can be derived from Equation (2). For this, we assume that �t is small and equal to ε

�t=ε (12)

Substitution of Equation (12) into Equation (2) leads to

f�(x+e�ε, t+ε)− f�(x, t)=−1

�
( f�− f eq� ) (13)

Taking a Taylor expansion to the left-hand side of the above equation in time and space around point
(x, t), we have

ε

(
�
�t

+e� j
�

�x j

)
f�+ 1

2
ε2
(

�
�t

+e� j
�

�x j

)2

f�+O(ε3)=−1

�
( f�− f eq� ) (14)

According to the Chapman–Enskog expansion, f� can be expressed as

f� = f (0)
� +ε f (1)

� +ε2 f (2)
� +O(ε3) (15)

Equation (14) to order ε0 is

f (0)
� = f eq� (16)

to order ε (
�
�t

+e� j
�

�x j

)
f (0)
� =−1

�
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� =−1

�
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� (18)

Substitution of Equation (17) into the above equation gives(
1− 1

2�

)(
�
�t

+e� j
�

�x j

)
f (1)
� =−1

�
f (2)
� (19)

From Equation (17)+ Equation (19)×ε, we have(
�
�t

+e� j
�

�x j

)
f (0)
� +ε

(
1− 1

2�

)(
�
�t

+e� j
�
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( f (1)
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� ) (20)
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Now summing Equation (20) over all the directions and simplifying with the following relations,∑
�

f (1)
� =∑

�
f (2)
� =0 (21)

and

�
�t
∑
�

f (1)
� =0 (22)

due to the conservation condition (11), provide

�
�t
∑
�

f (0)
� + �
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� +ε
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∑
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e� j f

(1)
� =0 (23)

Substitution of Equation (17) into the above equation leads to
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The last term on the right-hand side of the above equation is smaller compared with the first. It
can be omitted and treated as a truncation error [12]. After substituting Equations (6) and (7) into
the above equation with reference to Equation (16), an evaluation of the terms on the right-hand
side using Equation (10) results in

�C
�t

+ �(uiC)

�xi
= �

�xi

[
�iε

(
�− 1

2

)
exey

�C
�xi

]
(25)

If we set

�iε(�− 1
2 )exey =Di (26)

then Equation (25) is just the governing equation (1) for solute transport. Notice ε=�t from
Equation (12), rearranging Equation (26) gives �i ,

�i = Di

�t (�− 1
2 )exey

(27)

In general, there are two boundary conditions for solute transport, gradient of concentration is
zero and concentration is known. In the proposed model, zero gradient in distribution function can
be used for the former boundary condition and bounce-back scheme can be used for the latter, e.g.
unknown f� is decided by

f� =
{
f�+2, �=1 and 2

f�−2, �=3 and 4
(28)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:848–863
DOI: 10.1002/fld



854 J. G. ZHOU

In addition, a periodic boundary condition may be used to simulate long domain, e.g. for infinite
domain in the x direction, the following conditions are used:

f1|x=0= f3|x=L (29)

and

f3|x=L = f1|x=0 (30)

where L is channel length.

2.4. Stability conditions

The stability conditions can be similarly obtained following the procedure described by Zhou in the
model for groundwater flows [3]. Since the concentration is always non-negative, it requires a posi-
tive value for the local equilibrium distribution functions. It is easily seen that from Equation (10)
all the local equilibrium distribution functions are always positive except for f eq0 ; hence to ensure
f eq0 >0, we require

�ye
2
x +�xe

2
y<exey (31)

With reference to Equation (27), the above condition (31) can be rewritten as

�t<
(�− 1

2 )�x
2�y2

Dx�y2+Dy�x2
(32)

Since all �t , �x , �y, Dx and Dy are always positive, Equation (32) can be true with proper values
for �t and � only if

�> 1
2 (33)

which is a basic rule to choose � in the lattice Boltzmann equation (2) and consistent with
the requirement of a positive viscosity in the lattice Boltzmann method for the Navier–Stokes
equations.

Although the discussed requirements (32) and (33) are not sufficient conditions for stability,
practical computations have shown that the method is often stable if they are satisfied in numerical
solutions.

3. VERIFICATION

The method is applied to solve four test problems. The results are compared with the
analytical/exact solutions to demonstrate its potential, capability and accuracy.

3.1. 1D solute transport within short distance

The first test is that a conservative solute is introduced into a saturated soil column under steady
flow. It can be described by 1D advection–diffusion equation

�C
�t

+ �(uxC)

�x
= �

�x

(
Dx

�C
�x

)
(34)
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with the following boundary conditions

C(x, t) = C0, x=0

�C/�x = 0, x= L
(35)

where C0=0.001kg/m and L=0.3048m with dispersion coefficient Dx =1.075×10−7m2/s and
velocity ux =4.23×10−6m/s. This is the same as Problem 1a by Wexler [21] who gives the
following analytical solution:

C(x, t)=C0

⎡
⎢⎢⎢⎢⎣1−2exp

(
xux
2Dx

− u2x t

4Dx

) ∞∑
i=1

�i sin

(
�i x

L

)
exp

(
−�2i Dx t

L2

)

�2i +
(
ux L

2Dx

)2

+ ux L

2Dx

⎤
⎥⎥⎥⎥⎦ (36)

where �i are the roots of the equation,

�cot�+ ux L

2Dx
=0 (37)

In the computation, the rectangular lattices comprising 40 grids in the x direction and 10 in
the y direction are used with �x=0.00762m and �y=0.01524m and �t=76.2s. In order to
investigate the effect of relaxation time on solutions, several values of �=0.6, 1.0, 1.1, 1.2 and 1.5
were used to solve the problem. The results are shown in Figure 2. It is clearly seen from the figure
that the results for 1.0���1.2 are almost the same and otherwise different. Consequently, the use
of a value in the range of 1.0���1.2 can produce solution, which is independent of the relaxation
time, and hence a value in the range or close to it is generally chosen as the relaxation time in
numerical computations. The results with �=1.1 at different time are depicted in Figure 3 and
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Figure 2. 1D test: effect of � on solutions.
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Figure 3. 1D test: concentrations change with time.

compared with the analytical solutions from Equation (36), demonstrating an excellent agreement
between them. This confirms the accuracy of the proposed model.

3.2. 1D point source transport with constant velocity

The second test is the transport of 1D point source in infinite domain. This is a classic problem in
environmental hydraulics. It is governed by the same advection–diffusion equation as Equation (34)
with the following boundary conditions:

C(x, t)=0, x=±∞ (38)

which has an exact solution,

C(x, t)= C0√
4�Dxt

exp

[
− (x−ux t)2

4Dxt

]
(39)

A point source with C0=1kg/m at x=10m which is discharged into the channel with L=400m
at the start. The diffusion coefficient is Dx =0.01m2/s and the velocity ux =0.01m/s. This is the
same problem investigated by Zhang et al. [12].

For comparison, the same computation parameters as that used in the reference [12] were used,
i.e. the lattices comprise 400 points in the x direction and 4 in the y direction with �x=1m and
�y=1m as well as �=1.1 and �t=0.1s. The numerical results at t=10000 s and t=30000 s
are compared with the exact solution (39) and shown in Figure 4, from which there is an excellent
agreement between them, which confirms the accuracy of the proposed model. However, the
predictions in the reference [12] is overshooted in the peak regions and undershooted in the front
regions of the two profiles.
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Figure 4. 1D point source: comparison with the exact solution.

3.3. 2D solute transport with finite-width solute source

The third test is that migration of chloride ion in landfill leachate through a narrow, relatively thin,
valley-fill aquifer, which are governed by the following 2D advection–diffusion equation

�C
�t

+ �(uxC)

�x
+ �(uyC)

�y
= �

�x

(
Dx

�C
�x

)
+ �

�y

(
Dy

�C
�y

)
(40)

subject to the boundary conditions

C(x, t)=
{
C0, x=0 and y1�y�y2

0, x=0 and y<y1 or y>y2
(41)

and

�C/�x = 0, x= L

�C/�y = 0, y=0 or y=W
(42)

in which W =900m is the aquifer width, y1=121.92m, y2=609.9m, L=1500m, C0=1kg/m2,
the dispersion coefficients are Dx =2.150533×10−4m2/s, Dy =6.4516×10−5m2/s, ux =
3.527777×10−6m/s and uy =0. This is the same as Problem 6 by Wexler and its analytical
solution is [21],

C(x, y, t) =C0

∞∑
n=0

Ln Pn cos(�y)

{
exp

[
x(ux −�)

2Dx

]
erfc

[
x−�t

2
√
Dxt

]

+exp

[
x(ux +�)

2Dx

]
erfc

[
x+�t

2
√
Dxt

]}
(43)

in which

Ln =
{

1
2 , n=0

1, n>0
(44)

Pn =
{

(y2− y1)/W, n=0

[sin(�y2)−sin(�y1)]/(n�), n>0
(45)
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�=n�/W, n=0,1,2,3, . . . (46)

�=
√
u2x +4�2Dx Dy (47)

In this test, 60×60 rectangular lattices were used, i.e. �x=25m and �y=15m, together
with �=0.9 and �t=500000s in the simulation. The results at 1500 days and 3000 days are
presented here for comparisons with the analytical solutions from Equation (43). The contours of
the concentrations are shown in Figures 5 and 6, where the analytical solutions are also depicted,
showing very good agreement. The comparisons of the central profiles with analytical solutions
are plotted in Figure 7, which also present the results from the square lattice. All of these again
show excellent agreement.
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Figure 5. 2D test: contours of concentration at 1500 days.
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Figure 6. 2D test: contours of concentration at 3000 days.
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Figure 7. 2D test: comparisons of central profiles.

3.4. 2D shear dispersion

The final test is a problem with longitudinal dispersion, which is a typical problem related to solute
transport under shear flows in environmental engineering. A 2D problem with non-uniform profile
for velocity distribution in transversal direction is considered here. The problem is governed by
the same equation as Equation (40) with the periodic boundary conditions at inlet and outlet, and
the following boundary condition along the transversal direction:

�C
�y

=0, y=0 or y=W (48)

In this test, L=400m, W =10m, Dx =0.01m2/s, Dy =0.01m2/s and uy =0. The following
parabolic velocity profile is assumed for ux in the transversal direction throughout the channel in
the simulation

ux (x, y, t)=U0

[
1−

(
2y−W

W

)2
]

(49)

whereU0=0.1m/s. A contaminant withC0=1kg/m2 is injected uniformly across the cross-section
at x=6.5m at the same time. According to the environmental hydraulics, there is a longitudinal
dispersion due to non-uniformity of velocity profile in transversal direction. Since the channel is
quite narrow and the full transversal diffusion is soon achieved after a short time, the longitudinal
dispersion will dominate the transport. In the computations, �=1 was used.

In order to demonstrate the potential of the proposed model, first of all, different lattices in
flow directions, i.e. 800×20, 1200×20, 1600×20, 2000×20, 2400×20, 2800×20 and 3000×20,
were used. The results are shown in Figure 8, indicating that the lattice number in longitudinal
direction has strong effect on the solution and the results based on lattice number which is not
less than 2800 can produce lattice-independent solution for the problem.

Then, different lattices in transversal direction, i.e. 3000×10, 3000×20 and 3000×40, were
used. The results are plotted in Figure 9, which clearly shows that the lattice number in transversal
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Figure 8. Shear dispersion: central profiles based on different lattices in longitudinal direction.
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Figure 9. Shear dispersion: central profiles based on different lattices in transversal direction.
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Figure 10. Shear dispersion: comparisons of central profiles between rectangular and square lattices.

direction has much less effect on the solution. Thus, the results based on lattice number larger
than or equal to 20 will provide almost the same solutions for the problem.

Next, the results based on different square lattices, 2000×50, 2800×70 and 3000×74, were
also obtained and compared with that from the rectangular lattices of 3000×20, which are depicted
in Figure 10. From the figure, it follows that the results with square lattices of 2800×70 can
provide lattice-independent solution at the similar accuracy to that from the rectangular lattices
of 3000×20. However, the simulation time for the former is at least triple that of the latter as
listed in Table I, suggesting that the proposed model is more efficient than that on a square
lattice.

Finally, the problem is further solved with the finite difference method and the results are
compared with that from the proposed method in Figure 11. This again confirms the accuracy of
the proposed model. The contours of the shear dispersion are plotted in Figure 12, demonstrating
the typical patterns of shear dispersion with time.
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Table I. Comparisons of simulation time.

Solutions at time 1000 s 3000 s

Square lattice (2800×70) 9min 48 s 33min 10 s
Rectangular lattice (2800×20) 2min 52 s 10min 43 s
Square lattice (3000×74) 11min 36 s 39min 23 s
Rectangular lattice (3000×20) 3min 16 s 11min 20 s

Note: The calculations were carried out on a PC with CPU of 1.8GHz.
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Figure 11. Shear dispersion: comparisons central profiles between the lattice Boltzmann method (LBM)
and the finite difference method (FDM).

t=3000st=1000st=0s

Figure 12. Shear dispersion: contours at t=0s,1000s and 3000s (the line source at t=0s is exaggerated
for clarity in the above figure).

4. CONCLUSIONS

A lattice Boltzmann method for solute transport suitable for both rectangular and square lattices
is presented in this paper. The basic feature of the method is that it is formulated on the basis of
a natural extension of the local equilibrium distribution functions on square lattice to rectangular
lattice without any modification to either the lattice Boltzmann equation or the calculation proce-
dure. It then preserves a simple procedure and the same efficiency as that for a standard lattice
Boltzmann method on a square lattice. It has shown that the use of 5-velocity lattice makes the
model more efficient in simulations at the similar accuracy to that based on 9-velocity lattice for
a 2D problem. This provides the present method with potential capability when it is applied to a
large-scale practical problems for solute transport. The method has been validated with four tests.
It is simple, accurate and conservative.
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APPENDIX A

A.1. 3D model

A 3D lattice Boltzmann model for solute transport on a 7-speed cuboid lattice is essentially the
same as that for 2D model described in Section 2 with the following four modifications:

1. The local equilibrium distribution function f eq� is

f eq� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− �ze2xe

2
y+�ye2xe

2
z +�xe2ye

2
z

eexeyez

)
C, �=0

(
1

2

eyez
exe

�x + e�i ui
2e2x

)
C, �=1 and 3

(
1

2

exez
eye

�y+ e�i ui
2e2y

)
C, �=2 and 4

(
1

2

exey
eze

�z+ e�i ui
2e2z

)
C, �=5 and 6

(A1)

where

ez = �z

�t
, e= �x+�y+�z

3 �t
(A2)

in which �z is the lattice size in the z direction.
2. �i is expressed as

�i = eDi

�t (�− 1
2 )exeyez

(A3)

3. The stability conditions are

�>
1

2
, �t<

(�− 1
2 )�x

2�y2�z2

Dx�y2�z2+Dy�x2�z2+Dz�x2�y2
(A4)

4. The vector of the particle speed e� is defined by

e� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0,0), �=0

ex

[
cos

(�−1)�

2
,sin

(�−1)�

2
,0

]
, �=1,3

ey

[
cos

(�−1)�

2
,sin

(�−1)�

2
,0

]
, �=2,4

ez [0,0,cos(�−5)�] , �=5,6

(A5)
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